Flows of diffeomorphisms for multimodal image registration
نویسندگان
چکیده
We present a theoretical and computational framework for nonrigid multimodal registration. We proceed by maximization of statistical similarity criteria (global and local) in a variational framework, and use the corresponding gradients to drive a flow of diffeomorphisms allowing large deformations. This flow is introduced through a new template propagation method, by composition of small displacements. Regularization is performed using fast filtering techniques. This approach yields robust matching algorithms offering a good computational efficiency. We apply this method to compensate distortions between EPI images (fMRI) and anatomical MRI volumes.
منابع مشابه
Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملLarge deviations for stochastic flows of diffeomorphisms
A large deviation principle is established for a general class of stochastic flows in the small noise limit. This result is then applied to a Bayesian formulation of an image matching problem, and an approximate maximum likelihood property is shown for the solution of an optimization problem involving the large deviations rate function. AMS 2000 subject classification: Primary 60H15, 60F10; sec...
متن کاملDiffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images
The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent largedeformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic...
متن کاملMultimodal medical image fusion based on Yager’s intuitionistic fuzzy sets
The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...
متن کاملIndirect Image Registration with Large Diffeomorphic Deformations
The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by...
متن کامل